The Historic Gas Times

100th Edition

With thanks to our sponsor
nationalgrid

National Grid Capturing Stories

Do you have a story to tell about life and work in the gas industry of days gone by?

If so, National Grid would like your help to create one of the world’s largest digital history archives of the gas industry, capturing people’s experiences through video and audio recordings.

Capturing Stories is National Grid’s commitment to seek out and record the lived experience of the gas industry. This project will record the stories locked away in the memories of those who worked on former gas manufacturing sites, gas industry employees and people who remember their local gasworks being operational.

The completed podcasts and videos will be made available for anyone to view via the Capturing Stories website, and will supplement the physical archives held at the National Gas Archive in Warrington and the National Gas Museum in Leicester. National Grid will also donate copies to national and local museums, archives and libraries.

If you’re interested in taking part, please get in touch with Professor Russell Thomas by emailing russ.thomas@wsp.com or write to Russell Thomas, WSP, Kings Orchard, 1 Queen St, Bristol, BS2 0HQ or you can call the Capturing Stories phoneline direct on 07989 217992.
THE RISE OF GAS IN THE SOUTH WEST

BY COLIN ALDERWICK

In the early 1970s, I was working on corrosion control in the South Western Gas Board (SWGB) area. It was a busy time involving travel throughout the board area, bringing home to me just how big the area was and the number of counties involved. I decided at some time in the future I must find out how this came about. It was many years before the thoughts resurfaced, sparked by membership of the South Western Gas Historical Society, bringing with it a wider interest in the history of gas and particularly in the SWGB. What follows outlines the start and spread of gas manufacture in the area that became the SWGB and how it was formed on nationalisation. This is probably not dissimilar to what happened with the formation of other boards.

It started with William Murdoch, who is acknowledged as the first to make coal gas and pipe it over a distance to light his house and workshop. By chance this took place in the South West (SW), at Redruth in Cornwall, around 1792. A coal gas works was built for lighting the nearby Perran Wharf Foundry at Perranarworthal in Cornwall around 1799. Little is known about this gas works, but it is thought Murdoch was involved. There is little evidence of further coal gas activity in Cornwall or any other part of the SW for some years. In 1811, London-born John Breillat, a Bristol silk dyer and cloth calenderer with an interest in chemistry, set up a small coal gas plant at his Broadmead premises in Bristol. He lit his dwelling with the gas and placed a few lights in the street outside. It is believed Breillat was acquainted with Murdoch and had visited the Boulton & Watt Soho works at Birmingham.

Breillat invited the people of Bristol to witness this marvel, but they were not impressed. The resultant fire, smoke and smells were considered by many to be the work of the devil. At this time, the port of Bristol was involved in the whale oil trade, bringing strong opposition from those whose livelihoods depended on it and who wished to keep the oil lamps burning. Breillat’s hopes of building a gas works came to nothing at this time.

In 1815, Breillat was persuaded to try again with better results, obtaining enough people to invest in the venture. The Bristol Gas Light Company (BGLC) was formed and a non-statutory works built beside the River Avon, at Temple Back, in Bristol. It was designed by Samuel Clegg and cost around £7,000, partly due to the distance from potential customers. Pipes were laid through adjoining streets and over Bristol Bridge to bring gas into the commercial centre. A gas holder (GASOMETER at this time) was built but its proximity to the city gunpowder store gave concern. Work was stopped until a survey showed the gunpowder store to be structurally unsafe and it was relocated.

With Breillat as Engineer, gas supply started in May 1817, with street lighting starting in July. Gas lighting was a success being far superior to the candles and oil lamps it replaced. By October, demand was such that the works could not cope. Additional plant was hastily installed. At the end of December 1817, there were 142 private customers. One month later, this had risen to 200, giving an income of £2,500 pa. The company obtained statutory powers in March 1819. What followed over the next few years was repeated with many of the early gas works. Sites chosen were often restricted with little thought given to any need for future expansion. May 1821 saw the Temple Back works replaced by a new larger works at Avon Street, across the River Avon. The Avon Street works survived until 1957. Breillat started something of a gas dynasty as he, his sons and grandsons became very involved in the expansion of the gas industry.

In 1815, an Exeter apothecary, Reuben Phillips, built an experimental coal gas plant at his father’s Exeter shop, in Fore Street, with some gas lights in the street outside. Interest was such he soon had enough shareholders to proceed, obtain Royal Assent and build a works on a heavily industrialised site known as Exe Island, on the west side of Exeter. Phillips and a fellow engineer, John Golsworthy, a waterworks proprietor, designed and built the works. Gas making started in July 1817 with Golsworthy as Engineer. Phillips later developed and took out a patent for gas purification using dry lime. The process became widely used in the industry until it was replaced by iron oxide. History records that Phillips had difficulty getting payment of the royalties due.

Gas lighting was popular, generating enough interest for more works to be built in the SW. By 1820, works had been built at Helston and Falmouth in Cornwall, Bath in Somerset, and Gloucester and Cheltenham in Gloucestershire.

The early 1820s saw interest in gas made using whale oil instead of coal. A rival Bristol gas company was approved and received Royal Assent in 1823. The Bristol and Clifton Oil Gas...
SOUTH WESTERN GAS BOARD AREA

SHOWING ALL KNOWN GAS WORKS 1817 TO 1976 PROVIDING STREET LIGHTING AND/OR PUBLIC SUPPLY.

The following works are not shown due to space limitation:

- Gloucestershire (Bromsgrove) Exton Works
- Radstock (Clay Hill Works Near Midcombe Norton)
- Downside Abbey (Replicating by Stratton on the Fosse)
- Oakhill (Brewery, North of Shepton Mallet)

The Great Western Railway (GWR) Works at Swindon had at least 3 gas plant within their boundary in the years 1822-29. GWR was built in the large company owned workers village. An oil gas plant was also built on site to supply compressed gas for carriage lighting.
Company (BCOCG) built a works at Canon’s Marsh, on the harbourside close to the city centre. Approval was based on the use of whale and other oils and included a daily financial penalty if coal was used. Details of the system used are sketchy, but the works were built by Taylor and Martineau, two of the main proponents of gas from oil. It is probable Taylor’s vertical retort system was used. A requirement was that supply pipes laid by this company should be cast with a groove along the top to distinguish them from those of the rival BGLC. Some were found in later years, but the requirement seems to have been largely ignored. The two Bristol companies engaged in a price war for many years, eventually merging in 1853 to form The United Gas Light Company. Both works continued gas-making until the late 1950s. The company built a third much larger works at Stapleton Road, Bristol, in 1879 which closed in March 1971.

At a similar time, oil gas works were built at Plymouth and Taunton. Following claims and counter claims about the benefits of the two gases, independent tests showed oil gas to have some 2.4 times the illuminating power of coal gas, but was around 3 times the price. The timing of the oil gas works was not good, as in 1825 there was a collapse in the whaling industry leading to shortages of whale oil with resultant price increases. Trials were made with fish, seal and vegetable oils, peat, wood chips and resin but all three works eventually changed to coal. Another 8 oil gas works are known to have been built in other parts of the UK. These were at Liverpool, Edinburgh, Preston, Hull, Northampton, Norwich, Cambridge and Colchester. Bristol probably resisted the change to coal the longest, having adapted to using liquidised rosin and holding out until 1836. Some oil gas works were built by railway companies at stations in the SW but apart from Templecombe, in Somerset, all were probably for railway use only, the gas being used for station lighting or compressed into cylinders for use in carriage lighting.

By 1825, there were a total of 14 works in operation in the SW. By 1840, the total was 80 and by 1880 this had risen to 171, with some 18 unsuitable works being re-sited. Many of the works were small, non-statutory due to the cost of obtaining statutory powers, supplying small, spread out communities and therefore worked on a shoestring.

By 1825, there were a total of 14 works in operation in the SW. By 1840, the total was 80 and by 1880 this had risen to 171, with some 18 unsuitable works being re-sited. Many of the works were small, non-statutory due to the cost of obtaining statutory powers, supplying small, spread out communities and therefore worked on a shoestring.

The introduction of the aerated flame (Bunsen) allowed gas to be used not only for lighting but for cooking and heating. Despite this, there is little evidence that engineers/managers in the SW made much effort to sell gas or appliances, relying on word of mouth from existing customers to bring business to them.

Only the threat from electricity in the later 1880s onward seems to have forced some of them into becoming salesmen. Some larger undertakings started showing appliances at their works office, where customers went to pay gas bills. Truro, in Cornwall, is thought to be the first in the SW, with a dedicated showroom, and others followed.

Introduction of the gas mantle in the late 1890s helped to delay the changeover to electric lighting for many years. The introduction of coin-in-the-slot gas meters in the late 1890s proved popular, as customers’ gas usage could be tailored to what they could afford. Sales of gas cookers saw a noticeable increase.

The war of 1914/18 brought a shortage of coal, materials and labour, seriously affecting many works. After came a short
period of boom, followed by a deep recession. By the end of 1930, there were some 165 gas works still in operation in the SW, many of the smaller in a poor state and struggling to survive.

Early 1930s legislation encouraged the formation of holding companies who bought up gas works and carried out some improvements. This allowed for the bulk ordering of coal, plant etc., reducing costs and allowing expertise to be shared. A number of holding companies appeared in the SW.

The 1930s also saw a few of the larger, forward-thinking companies realise future profitability lay in bigger, modern, mechanised works producing more gas, thereby reducing costs per therm. This was achieved by buying up smaller works, laying mains to supply them with gas and closing them down. Where worthwhile, gas was provided to nearby communities along the way. Gas holders were often retained for storage. This became known as integration with progress on this being halted by WWII.

Looking at what happened through integration has answered my question on how the eventual area of the SWGB came about.

Gloucester, as part of the Severn Valley Holding Company, bought works in West Gloucestershire and Ross on Wye, in Herefordshire. Cheltenham bought works in North Gloucestershire, along with Broadway and Pershore, in Worcestershire, and Bidford on Avon, in Warwickshire. A main from Cheltenham to supply them with gas was completed during 1938. Evesham, one of the few municipal undertakings in the SW, refused to sell. Strangely, the Bristol Company, who had been pioneers in gas, showed no interest in integration, only taking over Keynsham in 1928 because of interest from Bath and possible encroachment on their territory.

Swindon United Gas Company, under the leadership of its General Manager Cecil Chester, was the most aggressive at integration. Gas was also provided into villages along the way, which previously had no supply. During the 1930s Swindon took over Cirencester in Gloucestershire, several works in its own county of Wiltshire, and Faringdon, in Oxfordshire. In 1945, Swindon acquired Lambourn and Hungerford, in Berkshire, and Bampton, in Oxfordshire. The effect on production costs can be seen in the below graph.

It is interesting to note that despite the deprivations of war, Swindon was able to undergo a major expansion in gas-making plant during 1941/3. This was due to the building in 1938 of a major permanent military establishment within the company statutory area. It required in excess of 875,000 therms of gas per annum, a load greater than that of any town in the Swindon distribution system, causing some supply problems. The Swindon area became home to several RAF bases and aircraft manufacturing sites during WWII. Maintaining gas supplies was therefore essential.

Many of the works in cities and larger towns of the SW suffered bomb and strafing damage during WWII as in other parts of the country. The shortage of coal, materials and labour left many in a poor state, leading to the Heyworth Report (HGT's 95, 96 and 97) and subsequent nationalisation of the industry.

Cecil Chester was the leading figure from the SW to submit evidence to the Heyworth Committee. It was no surprise that he was appointed Chairman of the SWGB on nationalisation in 1949.
Next to Scotland, the SWGB had the second largest land area of any board, being some 250 miles from top to bottom. It was, however, very different to the area envisaged by the Heyworth Committee, which had proposed only 9 gas regions for England and Wales. There would have been a London Region, but no Southern, West Midlands, East Midlands or Wales. Scotland was unchanged.

Despite its size, because of its largely rural nature, the SWGB had only 6% of the UK population and accounted for only 5% of the total UK gas usage. The area took in some 105 working gas works, mostly small, operating independently, charging different rates and supplying gas of different quality and calorific value.

Chester instituted a year-long review of the whole SWGB to assess all that he was responsible for. Aerial photographs of operational works were taken, many of which still survive but some are missing. Among other things the review showed that, overall, the SWGB was losing around 1 old penny on every therm of gas sold. Annual sales of 120 million therms equated to a yearly loss of £500,000. The decision was made to implement integration over the whole board, concentrating production at a few enlarged, modernised works. This involved extensive main-laying due to the geography. To finance this work and offset losses, there had to be a substantial increase in prices, which resulted in static gas sales for many years as the graph clearly shows.

Chester died in 1963, but had already instituted the building of 2 naphtha reforming works to be linked by a high-pressure pipeline with the aim of closing the remaining coal gas works. By the end of 1964, only 15 coal gas works were operating. A reformer-works at Seabank, Bristol, had recently started operating the first in the country to use the gas recycle hydrogenator (GRH) for enrichment. Seabank comprised two power gas, 10 million cu ft/day plants, based on the ICI steam/naphtha process. They were followed over 1967/8/9 by a further 6 power gas, 25 million cu ft/day plants, again based on the ICI process. Natural gas arrived at the works in late 1969 being used for enrichment and making the GRH redundant.

In 1966, the second reformer works known as Breakwater was built in a former quarry at Plymouth. Gas-making started in December with two, 10 million cu ft/day plants using the ICI process and GRH, but built by Humphreys and Glasgow. The works were extended later with four power gas, 25 million cu ft/day plants as at Seabank. In 1970, the 2 works were linked with a 20in diameter transmission pipeline.

1970/71 saw the closure of the 5 remaining coal gas works with Bath and Exeter being the last in May 1971. I had wondered why some coal gas works were still operating when the 2 reformer works were more than capable of supplying all the required gas. I discovered this was due to a long-term contract with the National Coal Board. The cost of integration up to this point was estimated at £19.2 million.

Natural gas (NG) conversion started in April 1970 and was completed in November 1975, with upward of 1.5 million items having been converted. The geography of the SWGB, particularly in Cornwall, North Devon and West Somerset made conversion of those areas difficult. It was only achieved using several propane air plants, mainly in coastal locations, to temporarily supply a substitute natural gas (SNG). The plants were moved around as required.

In 1970, one of the largest industrial natural gas loads in the country at the time was secured with the St Anne’s Board Mills, in Bristol, a subsidiary of Imperial Tobacco. The supply of 35 million therms p.a. commenced in January 1971. Cheaper foreign board imports and rising energy costs brought closure of the factory in 1980.

In April 1974, with its supply area converted, the reformer works at Breakwater, Plymouth, shut down. The following year it was extensively modified to manufacture SNG for short peak loads,
finally being shut permanently in 1985 and later demolished. Following completion of conversion in November 1975, after only 11 years of use, the last fully operational gas works, the reformer site at Seabank, Bristol, shut down and was later demolished. This ended around 158 years of continuous gas production in the SW. Some 75 coal gas works produced gas for 100 years or more. Bath in Somerset has the distinction of maintaining the longest continuous production on the same site, at 152 years.

It is interesting to note that the modern gas from oil reformer works lasted for such a short time, similar in fact to the oil gas plants of the 1820s though for an entirely different reason. Records suggest around 223 gas works operated in the SW at some time between 1817 and 1975, supplying gas for street lighting and or public use. There were also an unknown number of small private works built for country estates, mills, factories and large houses.

This article has been put together from various sources, but I would like to record my particular thanks to John Horne and the late John Taylor (SW) for material provided. Information was also obtained from the extensive research carried out by the late Dr Harry Nabb (SW) and recorded in his PhD thesis.

Colin Alderwick

The Beckton Plaque

We recently reported that this large iron casting has resurfaced and is on display at the Caldwell Lane depot of Cadent. We congratulate those responsible; it is a wonderful monument.

This photo was taken when the plate stood at the main gate to Beckton gasworks. In the nature of such things, some of the dates are challenged by another contemporary source but we tend to side with the cast iron version shown here! Several famous names appear, including one heard regularly on Radio 4 today, Sir Thomas Erskine May, 1815-1886, author of Parliamentary Practice and first Baron Farnborough. The first edition appeared in 1844 and the 25th is now on sale at £329.99. Mr Speaker is fond of quoting from it.

Erskine May’s private diaries for 1857-1882 have been published, but we don’t yet know what they say about his time as a Director of the Gas Light and Coke Company. Oddly, he doesn’t seem to be mentioned in Stirling Everard’s fine history of the Gas Light and Coke Company.

JBH
“The application of gas to the illumination of lighthouses has always been regarded as an important and desirable step. Mr Stevenson, in evidence before a committee of the House of Commons, remarked that ‘the great desideratum with respect to the lighting of lighthouses, was a gas burner of large size, and that it was in that direction that improvement was to be sought.’ Hitherto, however, no gas burner has been constructed, capable of furnishing the necessary amount of light, combined with the steadiness, intensity and solidity of flame requisite to render its application advantageous as a substitute for the oil lamp.

As a means of illustration, gas possesses numerous advantages over oil, and under no circumstances are those advantages more strongly displayed than in the case of a lighthouse, where simplicity in the machinery, facility of management and certainty of effect, are objects of the greatest importance.

The gas burner employed in the present instance, appears to supply that which has so long been wanting. It is constructed on the most philosophical principle, its chief peculiarity lying in the method employed to supply the air necessary to the perfect combustion of the gas. This supply is not only regulated with great exactness, but all the parts by which the air passes are placed on such angles that the impinging air is reflected and forced directly into the flame at the precise point in which it will conduct most powerfully to support the combustion. At the same time, the requisite quantity only is admitted; and therefore the flame is perfectly steady, and not, as it is technically termed, distressed and driven into spires by too powerful and rapid a current of air. The inverted cone placed in the centre is hollow and the air which is admitted by the tube which supports it, issues into the flame by a row of holes placed round the periphery of its base. By these contrivances, the burner is made to produce a rich opaque mass of flame, affording a powerful and steady light; and, when placed in the centre of the optical arrangement of lenses, lenticular zones, and mirrors, an immense amount of intense light is spread over the horizon.

In the instance now before us, the capability of gas to produce a light sufficiently powerful, was satisfactorily proved; for, in some cases it was distinctly seen on board ships at least eighteen miles distant from the coast; the gas, on this occasion, was used in its ordinary condition; but, in future, it is proposed to naphthalise the gas, and, in that case, the power of the light will be increased by at least twenty per cent.

The lighthouse was built and the optical apparatus planned by Mr Stephen Robinson, Civil Engineer, Hartlepool. The burner is that patented by Messrs McNiell and Co, 60, St Martin’s-lane, who fitted up those employed in the lighthouse, and all the arrangements for lighting with gas.”

This report and the illustration are taken from the Illustrated London News of 6th November 1847. This was not the first gas-lit lighthouse in the northeast.

There is much more to say about this notable gas installation, much of which survives in the Maritime Museum at Hartlepool. An article is promised for HGT 101.

JBH

THE LOCATION OF THE SUGG GLOBES

Following our request to readers for the location of the Sugg Globes, which featured on the front of HGT 99, we have had three suggestions (from Russell Thomas, Derek Robinson and Brian Roberts) for the site being located at the junction of High Street and Bridge Street, in Bristol. Medway and Co, the outfitters which featured on the corner behind the Sugg Globes was listed in the 1865 Webster’s Directory at this location. A later photograph of the shop which was still recognisable when it had become the Scholastic bookshop was featured online. Sadly, following the extensive bombing of Bristol in World War Two, many of the properties in this area of Bristol were destroyed, including those featured behind the Sugg Globes. Today the feature in the background would be the abandoned Norwich Union building. Thanks to all those who responded.

Russell Thomas
Our intrepid traveller Maurice Graham found only small, private gasworks in central India. We left him in the relative luxury of a long-distance train, bound for the (then) capital of India, Calcutta. He wrote an account of his travels in January 1908 and his opinions matched the times. The City of Calcutta then had a population of nearly one million but the Oriental Gas Company supplied an area which contained 1,250,000. This was already a thriving manufacturing centre with over 250 mills and factories, engineering trades being prominent.

“Calcutta has all the equipments of a modern city, from electric trams to refuse destructors. Its shipping and commerce are enormous. Its public lighting is all done on the incandescent gas system; there also being high-power lamps of all kinds. The lighting affords brilliant displays in many of the important locations. There are only nine electric lamps, which are flame arcs, put up merely as an experiment. Electric light has been kept out by the skilful diplomacy of the General Manager and by the intensity of the gas lighting - the latter being also, of course, much cheaper.”

Shallow regenerative furnaces were used and the few direct-fired beds were being replaced as quickly as possible, in order to maximise the coke tonnage available for sale. Coke commanded a very high price. “Coal is taken to the retorts by hand and coke is taken out the same way. Machinery is not seen in a country where caste or trade-union principles worked on religious lines predominate”. On the other hand, modern steel railway wagons brought coal to the gas works, each carrying 22 1/2 tons. There had recently been two long railway strikes when coal stocks fell to three day’s consumption. (There was coking coal in Bengal but the gas company may also have imported some of its needs). All the coke was sorted and sieved by hand, and local sales were carted into town by bullock carts.

The two retort houses were steel framed with brick infill panels, and special care had been taken with ventilation and lighting.

“Calcutta is lighted by the Oriental Gas Company Ltd., founded in 1853. The Chairman is Mr R Hesketh Jones and the Engineer and Manager is Mr. James C. Watson, who gave the writer a splendid welcome and showed him round the works. He has a splendid assistant in Mr L G Barber, late of Salford and Columbo, who has had a few years’ Indian experience.”

Rather than conventional condensers, the foul main led to a large above-ground water tank in which the pipework was immersed. Constantly changing water cooled the gas. There were two P&A tar extractors on the inlet to the exhausters.
There were five Beale exhausters. “The same regard for the engine-room is evidenced here as at home; boots must be taken off by the natives before entering.”

“Next to the exhausters house are five of Walker’s tower-scrubbers and a Holmes rotary washer. When asked what was in the scrubbers, coke or boards, Mr. Watson replied “packing cases”, for all the cases received are cut up for this purpose.” All this heavy class of apparatus is here, put under cover to protect it from the sun’s rays. Verandas, quite eastern in appearance, are arranged round the buildings, to protect the workers from the intense heat. All pipes are kept above ground so that any mishap can be readily detected. This is necessary where natives are employed.”

The purifier house was next visited, where the division plates were being taken out, making each pair into one large box. The lutes were being filled up with concrete, and made ready for rubber luting. Mr. Watson claimed that he would be able at any time to run a stream of water round the rubber and readily find any leakage. The walls of the house were to be raised and the present concrete roof used as a revivifying floor. The oxide is “home-made” on the works, as were special grids which avoided the need for the men to walk in the oxide, since they work bare-foot.

After four-years’ work, as opportunity permitted, all the valves controlling the three gasholders had been brought into one house. The total storage capacity was 1,717,000 cubic ft, and the last peak day, at Christmas, was 1,100,000 cubic ft. One of these holders would be familiar to HGT readers since it appeared on the cover of HGT 98 as built for the City of London Gas Company. Calcutta bought it in 1880 and it was still in good order in 1908. Its extra-thick side sheets made it too heavy, hence the prominent balance weights. Clayton & Son had recently erected the third holder, which “towered above everything”. The Engineer drew attention to the rivetting and other work done by local labour, “and it was certainly very good.”

There was no market for ammonia so a sulphate plant was built and good quality fertiliser produced, despite problems with a supply of acid. A home-made steam-tarring machine was used for coating old or long-stored pipes, so doubling their life in the ground. A mortar mill and a lime kiln were kept busy. “The old stokers and servants, who have been employed by the company for many years, fulfil the duties of brick-breakers and sorters, which is an acceptable occupation for them in their old age.” Among the staff, Babu Gosto Behary Dutt, the Chief Cashier, had been 43 years in the service of the company and was obviously a valuable and trusted man.

“Many skilled artisans are employed in the splendidly equipped workshops, machinists, pattern makers, joiners and wood-workers. There is a small iron foundry, but larger castings are supplied by local foundries in which Calcutta abounds. The blacksmiths would not use anything but coal for their fires, but Mr. Watson persuaded them to use breeze, after a lot of trouble.” Chinese labour was preferred for all descriptions of wood-working, as they were very expert. Three natives were engaged in mantle-burning and hardening, using a machine supplied by the Welsbach Company. The apparatus could be closed, preserving the eyesight of the operators, as there was a blue-glass screen in front of the burners.

The three gasholders and the works ‘pet’, a sheep which the natives believe to own the works. It had been there many years and roamed unmolested about the premises. The bullock’s role was not explained, probably Coke delivery.
In the meter repairing shop, the soldering irons were heated by gas, “much against the workers’ wishes, as they adhere rigidly to old customs in their craft as in their religion. Entering the machine shop, one is struck by the roughly painted red figure on each machine or vice. This is known as the ‘Poojah’ mark. One day a year each native worships his machine. Preceded by a priest, all the men walk in procession through the yard to the various machines, which the priest blesses for their past favours in giving a livelihood to the men working them. Prior to the entrance of the priest, the men, after a bath and food, decorate and feed their machines by laying upon them flowers, coconut, sandalwood and ghee (oil). After the ceremony is over, all the machine men walk out and have a day’s holiday. Even hammers and chisels are included in this ceremony, which is encouraged and subscribed to by the Engineer.”

To be continued...

Pioneering places

Pioneering Places: East Kent is part of the National Great Place Scheme. An ambitious plan that is intended to make East Kent a better place to live by exploring heritage and developing civic pride. Four places were chosen to participate in the scheme: Canterbury, Dover, Folkestone and Ramsgate. Of the four, Folkestone elected to study the story of Foord, and the relocation of Folkestone Gas Works into the area in 1866. The location is dominated by the hundred foot high railway viaduct, from which a passing train gave you a brief aerial view of the gas works below. The works was intended to be built alongside a branch line proposed by the South Eastern Railway to run down from Shorncliffe to Folkestone harbour. The line was never built, consequently coal supplies had to be brought up to the works from the harbour by road. Following nationalisation the works ceased manufacture in 1956 when bulk supplies were received from Dover. Until 2000, the site remained in use as a holder station. A considerable amount of research was undertaken concerning the gas works with extra detail provided by members of the History Panel. From this, an interesting exhibition was created. It is hoped the members of the community will be able to have their say in future development of the currently inaccessible gas works site.

During July, proposals were provided by East Architects to assist local residents in choices for the future of the Ship Street site.

All four holders appear to have been grounded when this photo was taken, probably from a passing train.

Brian Sturt
REFLECTIONS on 1974

What follows isn’t poetry, but it does reflect the ever-changing scene in many a distribution office of the 1970s. We don’t know who wrote it, some ‘mute, inglorious Milton’ might have been appropriate, but it refers to Aberavon, so he or she might rather have been a bard. Provenance is firmer; it was preserved by Roger Bennett, whose career began at Port Talbot and led to Scotland. The text was revealed to HGT by Tudor Jones, of Caerphilly.

Down in Aberavon, in the fields where horses graze Silent memories drifting in the haze of Halcyon days. The barriers down, the plant is still, the offices are closed, The canteen, stores and mess rooms where the fitters dozed! Gallagher’s sweeping changes came flooding like a tide. On the ebb of the Conversion, Chairman Fisher he did ride. Distribution top men decided it was time The clerical procedure to trim its wick and prime. (DOW is the time for O&M to come to the aid of the party! D.E.C.1018 brings F.I.M. As well "It’s elementary my dear Watson!” says ‘new look’ Personnel Away he goes to Newport and a brilliant stroke of Planning Brings Geoff in from the Region as the wind of change is fanning The North Sea gas flame to envelope the troublesome mains Conversion Spares Sid, Stan and Keith to doctor all their pens Meanwhile Aberavon becomes a ‘sick old man’ And is gradually out in the New Development Plan. The Assistant ‘Sheik’ and Engineer Baz is off to pastures new And the Llandarcy complex calls the Aberavon crew The Leakage Programme swells, and RLD’s i/c The F.I.M. and maintenance confine the pregnancy And Jerry on construction, extends the service pipes To houses shops and factories, and he lays the bigger types With men like Ray Morse, Phill and Vic with Weldon Tracking Sheets Mrs Evans and Dave Robinson in the Progress Seats With the new Bonus Scheme in action. Between jokes, Albert checks that their work is up to standard! Kathy emerges from the files of various A1 folders, And Elwyn comes in from the blue to chase round all the Holders But alas the Leakage hot seat grows cold with Kathy gone; And in 1975 F.I.M. claims Robinson And, as the year is ending, this 1974 Says farewell to R.H.Handford goes out through the door. Arising from the ranks and from the Engineers There’s a familiar face, that’s been with us for many years To Roger our new A.D.E. we wish all success. For he, like us, was deep-rooted at the Victoria Road Address.

Anon

With Thanks

The History Panel would like to express their sincere thanks to National Grid Property for their sponsorship of the 100th Edition of Historic Gas Times.

This sponsorship has allowed the distribution of HGT to be extended to the wider gas industry community.

You can now subscribe by Direct Debit

Paying by Direct Debit is quick, easy and secure. Your HGT subscription fee will be taken care of automatically every year and you can choose a January or March payment date.

To sign up to Direct Debit, complete the Direct Debit mandate form available on our website at https://www.igem.org.uk/news-and-publications/historic-gas-times/.

Alternatively, request a form by calling +44(0)1509 678152, email HGT@igem.org.uk or send a letter by post to HGT, IGEM House, 26-28 High Street, Kegworth, Derbyshire DE74 2DA.

The HISTORIC GAS TIMES

Published quarterly
Editors: J.B. Horne and R. Thomas
Annual Subscription
UK: £8.00 | Overseas: £15.00 | Via email: £6.00
Cheques payable to: IGEM History Fund
HGT Subscriptions, IGEM House, 28 High Street, Kegworth, Derbyshire DE74 2DA
Subscription enquiries: +44(0) 1509 678 150 or visit www.igem.org.uk/HGT
IGEM members can subscribe alongside their membership

Letters and articles are welcome. Contact us at hgt@igem.org.uk