Gas in multi-occupancy buildings
Gas in multi-occupancy buildings
CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Scope</td>
</tr>
<tr>
<td>3</td>
<td>Legislation, responsibilities, standards and competency</td>
</tr>
<tr>
<td></td>
<td>• 3.1 General</td>
</tr>
<tr>
<td></td>
<td>• 3.2 Legislation</td>
</tr>
<tr>
<td></td>
<td>• 3.2.1 Health and Safety at Work etc. Act</td>
</tr>
<tr>
<td></td>
<td>• 3.2.2 Management of Health and Safety at Work Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.3 Gas Safety (Installation and Use) Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.4 Electricity at Work Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.5 Construction (Design and Management) Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.6 Pipelines Safety Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.7 Pressure Systems Safety Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.8 Building Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.9 Dangerous Substances and Explosive Atmospheres Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.10 Gas Safety (Management) Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.11 Gas Act</td>
</tr>
<tr>
<td></td>
<td>• 3.2.12 Rights of Entry (Gas and Electricity Boards) Act</td>
</tr>
<tr>
<td></td>
<td>• 3.2.13 Gas Safety (Rights of Entry) Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.14 Provision and Use of Work Equipment Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.2.15 Regulatory Reform (Fire Safety) Order</td>
</tr>
<tr>
<td></td>
<td>• 3.2.16 Work at Height Regulations</td>
</tr>
<tr>
<td></td>
<td>• 3.3 Responsibilities</td>
</tr>
<tr>
<td></td>
<td>• 3.4 Typical installations</td>
</tr>
<tr>
<td></td>
<td>• 3.5 Competency</td>
</tr>
<tr>
<td></td>
<td>• 3.5.1 General</td>
</tr>
<tr>
<td></td>
<td>• 3.5.2 Welding</td>
</tr>
<tr>
<td>4</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td>• 4.1 General</td>
</tr>
<tr>
<td></td>
<td>• 4.2 Risk assessment</td>
</tr>
<tr>
<td></td>
<td>• 4.2.1 Minimising the risk</td>
</tr>
<tr>
<td></td>
<td>• 4.3 Assessment of gas load</td>
</tr>
<tr>
<td></td>
<td>• 4.3.1 General</td>
</tr>
<tr>
<td></td>
<td>• 4.3.2 Diversity</td>
</tr>
<tr>
<td></td>
<td>• 4.3.3 Flow equation</td>
</tr>
<tr>
<td></td>
<td>• 4.3.4 Pressure loss due to pipe components</td>
</tr>
<tr>
<td></td>
<td>• 4.3.5 Effect of altitude</td>
</tr>
<tr>
<td></td>
<td>• 4.4 Access and security</td>
</tr>
</tbody>
</table>
5 Meter installations
 • 5.1 General 26
 • 5.2 Siting methods 26
 • 5.2.1 Definitions of means of escape 26
 • 5.2.2 Siting meters with respect to common escape routes 28
 • 5.2.3 Siting meters with respect to sole escape routes within individual dwellings 29
 • 5.2.4 Siting meters with respect to building structure and environment 29
 • 5.2.5 Siting individual meters with respect to electrical apparatus 30
 • 5.2.6 Meter box installation - timber framed buildings 30
 • 5.3 Individual meter installations 30
 • 5.3.1 Domestic-sized meter installations (maximum capacity ≤ 6 m³ h⁻¹) 30
 • 5.3.2 Other meter installations (maximum capacity > 6 m³ h⁻¹) 30
 • 5.4 Multiple meter installations (meter banks) 31

6 Network pipelines 33
 • 6.1 General 33
 • 6.2 Above-ground entry 34
 • 6.3 Below-ground entry 37
 • 6.3.1 General 37
 • 6.3.2 PE 37
 • 6.3.3 Steel 38
 • 6.4 Risers and Laterals 39
 • 6.4.1 General 39
 • 6.4.2 Design - external network pipelines 41
 • 6.4.3 Design - internal network pipelines 43
 • 6.4.4 Jointing and flexibility 51

7 Isolation valves for network pipelines, meter installations and installation pipework 55
 • 7.1 General 55
 • 7.2 Key holding 55
 • 7.3 Pipeline isolation valve 55
 • 7.4 Inlet isolation valve 56
 • 7.5 Branch isolation valve 57
 • 7.6 Lateral isolation valve 58
 • 7.7 Emergency control valve and additional emergency control valve 58
 • 7.8 Features of lock-shut and other security valves 59
 • 7.8.1 General 59
 • 7.8.2 Lock-shut valves 60
 • 7.8.3 Ball-type security valve 60
 • 7.8.4 Standard security valve key 61
 • 7.8.5 Riser security valve 61
 • 7.9 Other valves 62
 • 7.9.1 Calibrated excess flow valve 62
 • 7.9.2 Thermal cut-off device 62
 • 7.9.3 Butterfly valves 62
FIGURES

1 Typical external meter installation adjacent to an individual dwelling 12
2 Typical internal meter installation with ECV within an individual dwelling. Network pipeline having above-ground entry 13
3 Typical internal meter installations with ECVs within individual dwellings. External network riser 13
4 Typical internal meter installations with ECVs within individual dwellings. Internal network riser 14
5 Typical remote meters and ECVs. AECVs fitted within individual dwellings 14
6 Typical remote bulk meter. AECVs and secondary meters within individual dwellings 15
7 Example of a “means of escape” 26
8 Example of a “common means of escape” 27
9 Example of a “common alternative means of escape” 27
10 Example of a “common sole means of escape” 28
11 Composite label 32
12 Typical above-ground pipeline building entry (steel pipe) 35
13 Typical above-ground pipeline building entry (PE pipe up to building entry) 36
14 Typical pre-fabricated below-ground entry. PE pipe in a steel sleeve 38
15 Typical below-ground entry. Steel pipe in a sleeve 38
16 Typical alternative below-ground entry. Steel pipe. Cellar/basement 39
17 External steel or PE network pipeline. Conventional building construction 42
18 Internal screwed or welded network pipeline. Passing through a protected shaft (on an outside wall). Ventilated directly to outside air 45
19 Internal screwed or welded network pipeline. Passing through a service duct (on an outside wall) which is fire stopped at each level. Ventilated directly to outside air at each level 46
20 Internal screwed or welded network pipeline in an enclosure (on an outside wall) which is fire stopped at each level. Ventilated directly to outside air at each level 47
21 Internal welded pipework riser ventilated indirectly to outside air via dwellings. Laterals passing through dwellings 48
22 Internal welded network pipeline in an enclosure (on an outside wall) which is fire stopped at each level. Ventilated indirectly to outside air via the dwellings. Pipe in a sleeve while in a common area 49
23 Fire stopping and sleeving. Pipeline riser between floors or between fire compartments 50
24 Fire stopping and sleeving. Pipeline lateral passing through walls or between fire compartments 50
25 Using unrestrained laterals to accommodate thermal expansion and contraction. Internal steel network pipelines 53
26 Using unrestrained laterals to accommodate thermal expansion and contraction. External steel network pipeline 54
27 Preferred PIV locations 56
28 Typical label for an ECV 59
29 Features of lock-shut valves 60
30 Standard security valve key 61
31 Riser security valve 61
32 Bonding arrangements for utilities in flats 97
33 Electrical bonding for above-ground pipeline building entry (steel pipe) 98
34 Electrical bonding for above-ground pipeline building entry (PE pipe up to building entry) 99
35 Electrical bonding of a below-ground entry system and internal riser 99
36 Equipotential bonding. External PE network riser with guard and cathodically protected below-ground pipe or protection sleeve 100
37 Equipotential bonding. external steel network riser with cathodically protected below-ground pipe or protection sleeve 101
38 Equipotential bonding. Remote meter installation. Internal metallic installation pipework – meters in same building 102
39 Equipotential bonding. Remote meter installation. External buried installation pipework – meters in a separate building 103

TABLES

1 Responsibilities for installation and operation 11
2 Welding standards 16
3 Welding inspection 17
4 Network, meter installation, installation pipework, appliance and chimney design and installation standards 18
5 Example notional floor areas and ventilation areas 31
6 Supporting above-ground network pipelines 40
7 Ventilation for vertical ducts containing a network pipeline 44
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Permissible joint types in steel network pipelines</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Supporting above-ground installation pipework</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>Appliance installation standards</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>Standards for materials and specification of components</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>Testing and commissioning standards</td>
<td>74</td>
</tr>
<tr>
<td>13</td>
<td>Differential movement of timber framed buildings</td>
<td>104</td>
</tr>
</tbody>
</table>
SECTION 1 : INTRODUCTION

1.1 This Standard has been drafted by a Panel appointed by the Institution of Gas Engineers and Managers’ (IGEM’s) Technical Co-ordinating Committee, subsequently approved by that Committee; the Gas Utilization Committee, the Gas Measurement Committee and the Gas Transmission and Distribution Committee, and published by the authority of the Council of IGEM.

1.2 This Standard summarises best practice for the design, installation, operation and maintenance of gas installations for multi-occupancy buildings (see Sub-Section 2.1). It combines well established practices with new advice on aspects of design and construction of such installations. The Standard consolidates best practice and guidance from legislation, and existing gas industry standards and procedures, with the aim of helping to achieve safe designs and installations for gas in the buildings concerned.

1.3 Significant amendments have been made compared to the first Edition. These include:

- reviewed hierarchy for timber and traditionally constructed buildings
- revision of all Figures and new additional Figures
- reviewed location of electrical insulation fittings/couplings
- updated requirements for equipotential bonding
- additional requirements for isolation valves
- further emphasis with respect to gaining access to network pipelines for future maintenance
- requirements for energy centres
- new procedure for testing existing network pipelines.

1.4 This Standard makes use of the terms “must”, “shall” and “should”, when prescribing particular procedures. Notwithstanding Sub-Section 1.7:

- the term “must” identifies a requirement by law in Great Britain (GB) at the time of publication
- the term “shall” prescribes a requirement which, it is intended, will be complied with in full and without deviation
- the term “should” prescribes a requirement which, it is intended, will be complied with unless, after prior consideration, deviation is considered to be acceptable.
1.5 The primary responsibility for compliance with legal duties rests with the employer. The fact that certain employees, for example “responsible engineers”, are allowed to exercise their professional judgement does not allow employers to abrogate their primary responsibilities. Employers must:

- have done everything to ensure, so far as is reasonably practicable, that there are no better protective measures that can be taken other than relying on the exercise of professional judgement by “responsible engineers”
- have done everything to ensure, so far as is reasonably practicable, that “responsible engineers” have the skills, training, experience and personal qualities necessary for the proper exercise of professional judgement
- have systems and procedures in place to ensure that the exercise of professional judgement by “responsible engineers” is subject to appropriate monitoring and review
- not require “responsible engineers” to undertake tasks which would necessitate the exercise of professional judgement that is beyond their competence. There should be written procedures defining the extent to which “responsible engineers” can exercise their judgement. When “responsible engineers” are asked to undertake tasks that deviate from this, they should refer the matter for higher review.

1.6 It is now widely accepted that the majority of accidents in industry generally are in some measure attributable to human as well as technical factors in the sense that actions by people initiated or contributed to the accidents, or people might have acted better to avert them.

It is, therefore, necessary to give proper consideration to the management of these human factors and the control of risk. To assist in this, it is recommended that due cognisance be taken of the HSG48 and HSG65.

1.7 Notwithstanding Sub-Section 1.4, this Standard does not attempt to make the use of any method or specification obligatory against the judgement of the responsible engineer. Where new and better techniques are developed and proved, they should be adopted without waiting for modification to this Standard. Amendments to this Standard will be issued when necessary and their publication will be announced in IGEM’s Journal and other publications as appropriate.

1.8 Requests for interpretation of this Standard in relation to matters within its scope, but not precisely covered by the current text, should be addressed to Technical Services, IGEM, IGEM House, High Street, Kegworth, Derbyshire, DE74 2DA, and will be submitted to the relevant Committee for consideration and advice, but in the context that the final responsibility is that of the engineer concerned. If any advice is given by or on behalf of IGEM, this does not relieve the responsible engineer of any of his or her obligations.

1.9 This Standard was published in September 2012.
SECTION 2 : SCOPE

2.1 This Standard covers gas installations to and within multi-occupancy buildings and the individual dwellings and commercial units within such buildings.

Note 1: The term "multi-occupancy building" means a building that contains multiple domestic dwellings or a building that contains both multiple domestic dwellings and commercial units.

Note 2: The term "dwelling(s)" means both "domestic dwelling(s)" and "commercial unit(s)" within a multi-occupancy building, unless otherwise stated.

Note 3: Properties deemed separate buildings, each comprising an individual single dwelling, such as detached, semi-detached or terraced houses/bungalows, are not covered.

Note 4: The principles of this Standard may be applied to buildings containing only commercial units.

2.2 This Standard covers new and replacement gas network pipelines, meter installations, installation pipework (including secondary meters), appliances and chimneys.

Note 1: In this context, "new and replacement" embraces:
- any first time gas supply or replacement of any of the above mentioned sections of the gas supply system
- any new extension to an existing section of the gas supply system
- significant partial replacement of/alteration to any of the sections of the gas supply system. For example, the replacement of a riser system having one or more laterals connected would likely be deemed 'significant partial replacement'.

Regarding replacement/alteration, it is important to comply with legal obligations, for example, the checks required by Gas Safety (Installation & Use) Regulations (GS(I&U)R) following work on any part of a gas supply system.

Note 2: Requirements for maintenance are provided in Section 13.

Note 3: A network pipeline supplying a primary meter installation will be a "service" or a "distribution main". The difference, for the purposes of this Standard, is insignificant except when cross referring to other Standards, for example IGE/TD/3 and IGE/TD/4. This Standard uses either or both of the terms "network" or "pipeline" throughout.

Note 4: IGE/TD/3 does not address pipes in buildings. IGE/TD/4 references IGEM/G/5 with respect to gas in multi-occupancy buildings.

2.3 For the replacement of existing installations and like-for-like component replacement and where reasonably practicable, IGEM would expect adoption of this Standard. In any event IGEM would expect a risk assessment (see Sub-Section 4.2) to be carried out and appropriate mitigation actioned where indicated by the risk assessment.
2.4 This Standard defines requirements covering the core areas of safety for gas in multi-occupancy buildings, such as:

- planning, risk assessment and minimising risk
- meter installations and location of gas meters with respect to escape routes and the GS(I&U)R and Building Regulations

 Note: This significantly affects many other aspects of the installation, for example ventilation, consumer access for meter reading and isolation, and escape routes.

- network pipelines, types of building entry, risers, laterals and isolation valves
- ventilation of network pipelines, meter installations and installation pipework
- access for inspection and maintenance to network pipelines, meters, installation pipework and appliance chimneys
- modifications, repairs, testing and re-commissioning of existing network pipelines
- energy centres and their risks in relation to domestic dwellings and their occupants
- installation pipework, gas appliances and chimneys
- materials
- location of valves
- electrical safety and equipotential bonding

 Note: The text on this subject has been drawn up with the assistance of the Institution of Engineering Technology (IET) and the Energy Networks Association (ENA).

- responsibilities and competence.

 Note: This Standard includes requirements that are either additional to or vary existing requirements contained in other standards where the requirements of those other standards may not be sufficient for gas installations in multi-occupancy buildings. However, those existing Standards are referenced and the majority of their requirements will still apply where relevant. These standards include:

 IGE/TD/3 and IGE/TD/4 for network pipelines; IGEM/TD/13 for pressure regulating installations (PRIs); BS 6400 for domestic-sized meter installations; IGEM/GM/6 and IGE/GM/8 for larger meter installations; IGEM/GM/7A and IGEM/GM/7B for electrical connections to, and hazardous area classification of, meter installations; BS 6891 for domestic-sized installation pipework; IGEM/UP/2 for larger installation pipework; IGE/UP/7 for timber and light steel framed buildings; BS 5440-1 and 2 for the supply of chimneys and ventilation; IGEM/UP/17 for dealing with shared chimney and flue systems.

2.5 This Standard addresses requirements for the risk assessment of gas installations within any multi-occupancy building and the individual dwelling(s)/unit(s) within such a building.

2.6 This Standard generally addresses appliances within domestic dwellings or commercial units having a heat input not exceeding 70 kW based on net calorific value (CV), which have been CE marked.

This Standard covers all types of open flue chimney or room sealed chimney systems (that comply with appropriate construction standards) for gas appliances, whether they are separate from, or integral with, the appliances.
2.7 This Standard addresses gas installations intended to contain odorised Natural Gas at a network maximum operating pressure (MOP) not exceeding 75 mbar within an occupied building.

Note 1: Where the network MOP exceeds 75 mbar, a PRI has to be installed in the network pipeline in accordance with IGEM/TD/13 or the primary meter installation has to be in accordance with BS 6400-2 or IGE/GM/8, as appropriate. Any such PRI or meter installation has to be located outside the building or in a separate compound/enclosure sealed from the building and accessible only from the outside.

Note 2: This Standard assumes a gas supply layout as given in IGEM/G/1 for “Standard gas supply arrangements”. Where a “bulk meter” serves secondary meters, via installation pipework, the principles of IGEM/UP/2 also may be applicable.

Note 3: For energy centre installations, see Section 8.

2.8 The term “meter” means “gas meter” unless otherwise stated.

2.9 The term “GT” is deemed to include a “Gas Conveyor” conveying gas in a network pipeline.

Note: The definition of “Gas Conveyor” is given in IGEM/G/1 and IGEM/G/4.

2.10 All pressures quoted are gauge pressures, unless otherwise stated.

2.11 Italicised text is informative and does not represent formal requirements.

2.12 Appendices are informative and do not represent formal requirements unless specifically referenced in the main sections via the prescriptive terms “must”, “shall” or “should”.
